
J. Fluid Mech. (2004), vol. 518, pp. 157–185. c© 2004 Cambridge University Press

DOI: 10.1017/S0022112004000928 Printed in the United Kingdom

157

Coalescence and bouncing of small aerosol
droplets

By GLORIA A. BACH, DONALD L. KOCH
AND ARVIND GOPINATH

School of Chemical Engineering, Cornell University, Ithaca, NY 14853, USA

(Received 13 June 2002 and in revised form 14 June 2004)

The trajectories of 20 and 40 µm radius water droplets colliding with a gas–water
interface are observed to determine the conditions under which drops will bounce
or coalesce on impact and the apparent coefficient of restitution of the drops that
bounce. The experiments were performed in a pressure chamber so that the pressure
and composition of the gas could be varied to explore the effects of the viscosity and
mean-free path of the gas. The impact velocity is varied by producing drops with a
velocity larger than their terminal velocity using a piezoelectric drop generator and
adjusting the distance between the generator and the liquid interface. The geometry
of the collisions is axisymmetric and the Weber number, We= ρlU

2a/σ , is O(1) or
smaller, so as to facilitate comparison with a theory for weakly deformable gas–liquid
interfaces. Here, ρl is the liquid density, U the impact velocity, a the drop radius and
σ the surface tension. After a low-Weber-number drop coalesces, a smaller, daughter
drop is emitted from the interface with a velocity higher than the incident velocity of
the mother drop. The daughter drop radius is about 0.55a and the daughter velocity
is 0.38(σ/(ρla))1/2 for We < 0.01.

The experimental results are compared with a theory in which the small
deformations of the drop and surface are expanded in Legendre polynomials and
Fourier modes, respectively, the non-continuum lubrication stresses are computed in
the thin gas film between the drop and interface, and the liquid flow is approximated
as an inviscid potential flow. The coefficient of restitution decreases with increasing
Weber number and becomes insensitive to the viscosity of the gas at Weber numbers
larger than about 1. At smaller Weber numbers, drops in a less viscous gas lose
less energy during the collision. Drops are observed to undergo a transition from
coalescence to bouncing as the drop velocity (Weber number) is increased. However,
the marginal condition for drop bouncing is much more sensitive to gas mean-free path
(Knudsen number) and gas viscosity (Ohnesorge number) than to Weber number.
The Knudsen and Ohnesorge numbers are defined as Kn= λ/a and Oh = µg/(ρlaσ )1/2

where λ is the mean-free path and µg is the gas viscosity. Theory and experiment
show similar trends of increasing critical Weber number with decreasing Ohnesorge
number and increasing Knudsen number. Theoretical results are also derived for the
coalescence–bounce transition and coefficient of restitution for head-on collisions of
equal sized drops.

1. Introduction
When a drop collides with a fluid interface or with another drop, the collision

may result in bouncing, coalescence, or coalescence followed by re-emission of one
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or more drops. The outcome of drop–drop collisions plays an important role in the
development of the drop size distribution in dense sprays. The collision of a drop
with a fluid interface retains much of the physics of a drop-drop collision but is more
easily observed experimentally. In addition drop–interface collisions may influence
the concentration of drops and the thickness of a liquid film in situations, such as
gas–vapour heat exchangers, where a spray of droplets coexists with a continuous
liquid phase (Lee & Hanratty 1988). Droplet bouncing may also be a phenomenon
that one would like to avoid in designing drop-on-demand technologies where small
quantities of fluids are to be delivered as aerosol droplets to specific positions on a
surface. Previous experimental studies of drop–drop and drop–interface collisions in
a gas have involved drops larger than about 100 µm in diameter. We will examine
smaller drops (40 and 80 µm diameter) in order to explore the different physics that
arises with small drop size and to facilitate comparison with a theory based on small-
amplitude deformation of the surface of the drop and the gas–liquid interface. For
simplicity of analysis, axisymmetric collisions are studied. Before a drop can coalesce
with a fluid layer or another drop, the thin gas film separating the two gas–liquid
interfaces must break down. This suggests the possibility that non-continuum gas
flow may play a critical role in the coalescence–bounce transition. To investigate this
possibility, our experiment allows for variation of the pressure and composition of
the gas and our theory incorporates the rarefied gas flow occurring in the lubrication
gas film.

When aerosol drops bounce from a liquid surface, they typically have sufficient
inertia to travel far away from the surface before gravity pulls them back to undergo
a second collision. Furthermore, the influence of gravity during the actual collision is
small (Gopinath & Koch 2001a, b). This may be contrasted with the case of liquid
drops suspended in a liquid where the energy of the drop is dissipated quickly by
the viscosity of the suspending fluid and gravity plays an important role during
the collision. Since drop–interface and drop–drop collisions are quite similar in
aerosol systems, we will consider both types of collision in our theoretical study.
Our experimental study will focus on drop–interface collisions because they are more
easily produced and observed than drop–drop collisions.

The seminal experimental study of coalescence of water drops at a gas–water
interface was published by Schotland (1960). Schotland observed the oblique collision
of a stream of drops with a gas–liquid interface and varied the pressure and
composition of the gas. For drops of diameter 200–800 µm, he found that the
outcome of the collision depended on the Weber number, We = ρlU

2
na/σ , based on

the component of the velocity normal to the surface, Un, and on the ratio of densities
of the gas and liquid phases, ρg/ρl . Here, ρl and ρg are the densities of the liquid and
gas phases, a is the drop radius, and σ is the interfacial tension. The Weber numbers
considered by Schotland were quite large and his observations are consistent with the
assumption that fluid and gas inertia were predominant mechanisms controlling the
outcome of the collision. Drops with sufficiently high inertia coalesced whereas lower
Weber number drops bounced.

Jayaratne & Mason (1964) studied the oblique collision of a stream of water
drops with an air–water interface for drop diameters of 120 to 400 µm at standard
atmospheric conditions. In contrast to Schotland’s experiments, Jayaratne & Mason
observed a transition from coalescence at low Weber numbers to bouncing at moderate
Weber numbers. The transition Weber numbers were typically O(1) and depended
in a non-monotonic fashion on the impact angle. Jayaratne & Mason also observed
the coefficient of restitution for drops colliding with nearly normal impact velocity
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to be about 0.2 for the range of Weber numbers from 0.8 to 16 considered in their
study.

Later studies (Brazier-Smith, Jennings & Latham 1972) of drop–drop collisions
showed a transition from coalescence to bouncing followed by a second transition
from bouncing to coalescence with increasing Weber number at a given impact angle.
Pairs of water drops at standard atmospheric conditions did not exhibit the first
(coalescence-to-bouncing) transition if the impact velocity was nearly parallel to the
line of centres. However, later studies (Qian & Law 1997) showed that the first
transition occurs for nearly head-on collisions of hydrocarbon drops at standard
atmospheric conditions and of water drops at elevated pressures. Qian & Law also
noted that mass density is not the only property of the gas that affects the outcome
of collisions. In particular, they found that drops bounced much more readily in
helium at a pressure of 7.5 atm than in nitrogen at 1 atm despite the fact that the
mass densities were identical. They noted that the helium has about 11% higher
viscosity and that this might enhance the drop deformation and bouncing. However,
we believe that a much more significant factor is the mean free path, which is 2.5
times smaller in the helium than in the nitrogen. Thus, non-continuum effects would
reduce the lubrication pressure before the bounce could occur in nitrogen, but not in
the higher-pressure helium.

The focus of this study will be to understand the initial transition from coalescence
to bouncing that occurs at relatively modest Weber numbers. For simplicity of
the experimental situation, we consider drop–interface collisions, while axisymmetric
collisions are studied to simplify the theoretical calculations. In order for a drop to
bounce, its kinetic energy must be converted to energy associated with the larger
surface area of a deformed drop and interface and then restored to the kinetic energy
associated with the motion of the drop away from the surface. At asymptotically small
Weber numbers, this process can occur with interfacial deformations that are small
compared with the radius of the drop. Exploiting this observation, Gopinath & Koch
(2001a) developed an asymptotic theory for the dynamics of drop–drop collisions. In
some of their calculations, the drops were considered to be separated by a repulsive
boundary that prevented coalescence without any viscous dissipation of energy. In
other calculations, viscous lubrication flow of the gas in the gap between the particles
was considered. In this paper, we will account for the non-continuum gas flow in
the lubrication film in order to predict the transition from coalescence to bouncing
with decreasing gas mean-free path. The collision of a drop with a liquid surface was
studied by Gopinath & Koch (2001b) using the simple model of a repulsive force
preventing coalescence to determine the time scale of the bounce and the area of
the near-contact region between the drop and interface. The present study provides
the first analysis of the continuum or non-continuum gas flow in the lubrication film
between a drop and a liquid surface. Thus, we will present results for the gas pressure
and interfacial deformation profiles and obtain the coefficient of restitution for the
bounce and the conditions leading to a coalescence–bounce transition.

The experimental method and the experimental observations of the coalescence–
bounce transition and the coefficient of restitution will be discussed in § 2. In § 3, we
discuss the theoretical method for describing drop–interface collisions incorporating
non-continuum gas flow in the lubrication gap. The predictions of the theory for
coalescence–bounce transition and coefficient of restitution are compared with the
experimental observations in §§ 4 and 5, respectively. In § 6, we present experimental
observations of the formation of smaller drops following a drop–interface coalescence
event.
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2. Experimental study of drop–interface collisions
We observed the collision of water drops of approximately 20 and 40 µm radius

with a gas–water interface in a controlled atmosphere. The drops were formed
from deionized water using a commercial Microdrop generator system developed by
Gesselschaft fur Mikrodosiersysteme. This device produces drops of precisely con-
trolled size from a glass capillary. The ejection process is forced by a piezo-ceramic that
surrounds the capillary and compresses it with a controlled amplitude and duration
so that a single drop can be formed with no satellite drops. The drop radius is
varied primarily by changing the diameter of the capillary. There is also a slight
dependence of the drop radius on the viscosity and pressure of the gas. The
early work of Schotland and Jayaratne & Mason used streams of drops which
facilitated observation with strobe photography. However, a stream of drops precludes
observation of axisymmetric collisions because the bouncing drops would collide with
the incoming drops. The Microdrop generator can form drops one at a time so that
there is no interference between successive drops.

The drop generator is enclosed in an aluminium pressure vessel with quartz
viewing windows, so that the gas composition and pressure can be varied. Nitrogen
(µg = 1.66 × 10−4 g cm−1 s−1) and methane (µg = 1.02 × 10−4 g cm−1 s−1) were used as
the ambient gases to explore the effects of gas viscosity. The apparatus was designed
to allow a large range of pressures to be explored. However, for the drop sizes studied,
coalescence–bounce transitions were only observed in a narrow range of pressures
(2.8–3.5 atm for the larger drops and 4.5–6 atm for the smaller).

Drops are ejected from the capillary with a velocity of about 200 cm s−1. The impact
velocity can be varied between this value and the terminal velocity of the drop by
adjusting the vertical separation between the tip of the capillary and the gas–liquid
surface using a translation mount. A 40 µm diameter drop reaches its terminal velocity
of about 6 cm s−1 after falling approximately 3 cm in nitrogen at standard atmospheric
conditions.

The trajectories of the drops as they collided with and bounced from the gas–liquid
interface were observed using a high-speed video camera with 2000 frames/s attached
to a long-range microscope. Despite the magnification, the drop radius was only a few
pixels and so it could not be determined accurately from the video image. Instead, the
drop radius was deduced from the apparent drag coefficient obtained by fitting the
drop trajectory. The frame rate of our camera was not sufficient to observe the details
of the drop bounce. This is not surprising because the time for which the drop is in
near-contact with the surface is predicted to be about tb = 5(ρla

3/σ )1/2 = 0.15 ms for
the 40 µm radius drops (Gopinath & Koch 2001b). Thus, the information obtained
from the experiment is a series of particle positions as a function of time before
and after collision. A typical trajectory in which a drop bounces from the interface
is plotted in figure 1. The trajectories were fitted to the results of a solution of the
drop’s equation of motion including inertia, gravity and nonlinear drag. The Reynolds
number, Reg = ρgUa/µg , is typically of order one. An empirical nonlinear drag force
suggested by Clift, Grace & Weber (1978) was adopted. The parameters obtained
by fitting the trajectory were the incident velocity, rebound velocity and drop radius.
Although multiple parameters were used to obtain a good fit, the interaction among
these parameters was not a major source of error. The drag force (and therefore
the drop radius) primarily affects the trajectory during the time after the bounce
where the drop is approaching its terminal velocity, whereas the impact and rebound
velocities control the trajectory close to the time of impact. The uncertainty in the
drop radius and the coefficient of restitution determined by repeating measurements
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Figure 1. A typical trajectory in which a drop bounces from the interface.

for the same experimental conditions were about 5% and 3% of the mean
values.

The dimensional parameters that might be expected to influence the outcome of
the drop–interface collision are the interfacial tension σ , the density ρl of the liquid
phase, the viscosity µg of the gas phase, the drop radius a, and the impact velocity
U . The drop collision is not expected to be affected by the liquid viscosity µl or the
gas density ρg for reasons that will be discussed in § 3. For coalescence to occur, the
gas film between the drop and the pool of liquid must rupture. Because the dynamic
viscosity of the liquid is larger than that of the gas, the gas velocity in the film must
nearly vanish at the gas–liquid interfaces. As a result, the continuum lubrication force
in the film is quite large and this force must be overcome by the breakdown of the
continuum flow in the gas before coalescence can occur. This leads to an additional
dimensional parameter, the mean free path of the gas λ.

A convenient choice of dimensionless parameters is then the Knudsen number
Kn= λ/a, the Ohnesorge number Oh = µg/(ρlaσ )1/2 based on the gas viscosity and
the liquid density, and the Weber number We = ρlU

2a/σ . The Ohnesorge and Knudsen
numbers are fixed by the choice of drop size and the gas–liquid system. Thus, only
the Weber number changes when we do a series of experiments varying drop velocity.

The results of our experiments are presented in figure 2 and table 1. The figure
shows the coefficient of restitution e for drop–interface collisions that lead to a bounce
as a function of the Weber number for two drop radii (approximately 20 and 40 µm)
and for nitrogen and methane as the suspending gases. We did not observe any effect
of gas pressure on the coefficient of restitution and the figure contains results for all
the pressures considered in our study. The lack of dependence of the coefficient of
restitution on pressure is to be expected. The gas viscosity is independent of pressure
and the pressure affects only the mean free path of the gas. The mean free path
modifies the viscous pressure drop in the gas film at very small separations and leads
to a breakdown of the gas film. However, when drops bounce at Weber numbers
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Figure 2. Experimental results for the coefficient of restitution e for drop–interface collisions
as a function of the Weber number We. The open symbols are for the larger drops and the
closed symbols for the smaller drops. The circles are experiments with nitrogen and the squares
with methane. Each point on the plot represents an average of three drops generated under
the same conditions.

Ambient Average drop δnc critical,
gas radius (µ) χ Ca We Kn Oh experiment

N2 19 305 7.36 × 10−5 0.022 5.48 × 10−4 4.91 × 10−4 15.64
N2 37 306 3.86 × 10−5 0.012 5.46 × 10−4 3.55 × 10−4 11.38
CH4 17 586 5.83 × 10−5 0.034 5.55 × 10−4 3.16 × 10−4 13.77
CH4 33 4825 2.46 × 10−4 1.185 5.70 × 10−4 2.26 × 10−4 27.51
N2 22 417 8.70 × 10−5 0.036 6.96 × 10−4 4.57 × 10−4 13.40
N2 41 996 1.12 × 10−4 0.112 6.15 × 10−4 3.36 × 10−4 17.21
CH4 18 2923 2.75 × 10−4 0.804 6.97 × 10−4 3.07 × 10−4 23.79
CH4 32 4946 2.61 × 10−4 1.291 7.43 × 10−4 2.30 × 10−4 21.74

Table 1. Summary of experimental results for bounce–coalescence transitions.

significantly above the critical Weber number for the coalescence–bounce transition,
the film thickness is expected to remain much larger than the mean free path and no
effect of the gas pressure is anticipated. As the Weber number increases, the coefficient
of restitution decreases. This may be attributed to the larger amplitude of interfacial
deformation that occurs at larger Weber numbers. The larger deformation allows a
greater portion of the drop’s kinetic energy to be transformed into waves on the liquid
surface and oscillations of the drop shape. At high Weber number, the coefficient of
restitution is independent of the gas viscosity as may be expected if the energy loss
to surface waves dominates over viscous dissipation. The results for Weber numbers
greater than one approach a coefficient of restitution of approximately 0.3, which is
near the value of about 0.2 obtained by extrapolating Jayaratne & Mason’s (1964)
observations for We =0.8 − 16 to normal incidence. At smaller Weber numbers, the
coefficients of restitution for drops in the less viscous methane gas exceed those in
nitrogen. Similarly, the larger drops in nitrogen have a higher coefficient of restitution
than the smaller drops in nitrogen. An increase in the radius of the drop decreases
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the Ohnesorge number, which may be viewed as a non-dimensional viscosity, and
so an increase in the coefficient of restitution is to be expected. We may note that
the coefficient of restitution for all the conditions studied is low. The fraction of the
kinetic energy retained after the collision, i.e. e2, is always less than 0.4.

When a drop approaches the interface with a small velocity, it produces small fluid
dynamic stresses and little deformation of the interface and coalesces on impact. As
the drop velocity (or Weber number) is increased, the extent of the drop and interface
deformation increases. This leads to the possibility that the kinetic energy associated
with the drop’s translational motion will be stored as interfacial energy and then
converted back to kinetic energy of drop motion in the opposite direction. The lowest
Weber numbers for which drops were observed to bounce are given in table 1 for
two values of the drop radius (approximately 20 and 40 µm) in gases (methane and
nitrogen) with two viscosities. The gas pressure was in the range 2.8–6 atm and was
adjusted to give two values of the Knudsen number (approximately 5.5 × 10−4 and
6.9 × 10−4). The results in table 1 clearly indicate that gas pressure has a strong
influence on the coalescence–bounce transition. As the pressure is decreased so that
the mean free path and Knudsen number increase, continuum lubrication interactions
break down at a larger gap thickness. This extends the range of Weber numbers for
which coalescence occurs. Originally, we planned to perform experiments over a
much wider range of gas pressures. However, we found that outside a narrow range
of pressures, either all drops coalesce or all drops bounce for the range of impact
velocities accessible with our apparatus. The experiments conducted in methane, the
gas with the lower viscosity (yielding a smaller Ohnesorge number), exhibited a higher
critical Weber number. In the less viscous gas, the gas film must thin to a smaller
gap thickness before the drop and interface deform sufficiently to produce a bounce.
Thus, the liquid–gas interfaces come closer together and have more opportunity to
coalesce. Increasing the drop radius also decreases the Ohnesorge number, which
may be thought of as a non-dimensional gas viscosity. This helps us understand why
an increase in drop radius also leads to a higher critical Weber number. Note that
when we increased the drop radius we also adjusted the pressure so that the Knudsen
number remained unchanged.

3. Theoretical description of collisions
Most previous investigations of drop–drop and drop–interface collisions in the

parameter regime characteristic of aerosol drops have not incorporated a detailed
study of the role of the gas film in the collision. For example, Foote (1975) used
an artificial repulsive barrier to prevent drop–drop contact and computed the radial
extent and temporal duration of the contact event. He then used this information to
solve a separate film drainage problem and applied a criterion that when the film
reached a specified thickness rupture must occur. Similarly, Gopinath & Koch (2001b)
studied the inviscid dynamics of a drop–interface collision using an artificial repulsive
barrier and found the time of the bounce and maximum extent of the contact region
as a function of the Weber number. Nobari, Jan & Tryggvason (1996) used a finite-
difference method to simulate the collision of two drops in a gas at high Weber
numbers (We=10–110). They determined the time scale of collision, the radial extent
of the contact region and the coefficient of restitution, but did not resolve the flow
in the gas film down to length scales at which non-continuum or non-hydrodynamic
effects might have led to coalescence.
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To predict the transition from coalescence to bouncing and the coefficient of
restitution for aerosol droplet collisions, we require a coupled solution of the non-
continuum gas flow and interfacial deformation in the lubrication gap and the liquid
flow and interfacial deformation outside the gap region. Gopinath & Koch (2001a)
developed such a coupled solution for the head-on collision of two aerosol droplets in
a continuum gas and that study will form the basis for the method employed here. The
method is based on matched asymptotic expansions for the gas velocity and interfacial
deformation in a lubrication film and an inviscid analysis of liquid flow in the drops
or drop and fluid half-space. A characteristic thickness of the gas film during the
bounce process is the gap thickness aCa1/2 at which the lubrication pressure becomes
comparable with the Laplace pressure σ/a so that significant drop deformation occurs.
Here, Ca = µgU/σ is the capillary number. The lubrication analysis is applicable as
long as this gap thickness is much smaller than a. We will impose a no-slip boundary
condition on the gas velocity at the gas–liquid interfaces. This approximation is
valid if (µg/µl)

2 � Ca1/2 � 1. In our experiments, (µg/µl)
2 = 1 × 10−4 − 2.8 × 10−4

and Ca1/2 = 6 × 10−3 − 2 × 10−2. The inertia in the gas film can be neglected as long
as RegCa1/2 � 1. A typical value of RegCa1/2 in our experiments is 0.01.

The larger length scale a of the flow of the liquid within the deforming drop
and the liquid half-space and the smaller kinematic viscosity of the liquid make
viscous effects in the liquid much less important than in the gas phase. A criterion
for an inviscid analysis of the liquid flow is that the characteristic bounce time,
tb =(ρla

3/σ )1/2 be much smaller than the time a2ρl/µl for viscous diffusion through
the drop (Gopinath & Koch 2001a). For our experimental conditions, tb = 0.15ms
and a2ρl/µl = 1.6 ms. The analysis assumes that the characteristic amplitude of drop
and interface deformation, aWe1/2 and the radial extent of the lubrication film aWe1/4

are much smaller than the drop radius, although the drop–interface collisions in
our experimental study occur at lower Weber numbers than previous experiments,
We1/4 = 0.3–1.2. Thus, the assumption that there is a wide separation between the
radial extents of the film and outer region is likely to lead to the most significant
errors in applying the theory.

In applying the theory of Gopinath & Koch (2001a) to determine the coalescence–
bounce transition, we must incorporate an analysis of the non-continuum gas flow
in the lubrication region. In addition, the collision geometry and the conditions for
matching the inner and outer solutions are different in the drop–interface collision
that is our primary focus here and the drop–drop collisions considered by Gopinath &
Koch (2001a). Thus, we will explain these two features in detail.

We consider an initially spherical aerosol drop approaching an initially planar gas–
liquid interface with initial velocity W ∗(t∗ = 0) = − Uk, where k is the unit normal
pointing out of the liquid half-space. In this section, a superscript asterisk will denote
dimensional variables, and scaled variables will have no asterisk. We denote the
downward deformation of the interface from its initial plane as D∗

1(r
∗, t∗) and the

upward deformation of the drop from its initial spherical shape as D∗
2(r

∗, t∗) where r∗ is
the radial distance from the axis of symmetry. We define a gap thickness h∗(t∗) that
would occur in the absence of deformation, so that dh∗/dt∗ =W ∗. The positions of
the interface and the drop relative to the initial plane of the undeformed interface are
H ∗

1 = − D∗
1 and H ∗

2 = h∗ + r∗2/(2a) + D∗
2 , respectively, and the gap between the two

liquid–gas interfaces is H ∗ = H ∗
2 − H ∗

1 = h∗ + r∗2/(2a) + D∗
1 + D∗

2 .
Interfacial deformation becomes important when the lubrication gas pressure is

comparable to the Laplace pressure σ/a. This occurs at a gap thickness of aCa1/2.
Thus, we scale the pressure with σ/a, the gap thickness with aCa1/2 and the radial
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coordinate with aCa1/4. Deformations are scaled with aWe1/2, velocities with U , and
times with the bounce time aWe1/2/U . The scaled gap thickness is thereby

H = h + 1
2
r2 + St1/2(D1 +D2), (1)

where St = We/Ca = ρlUa/µg is the Stokes number which represents the relative
importance of drop inertia and gas viscosity. Typically, St1/2 = 17–70 in our
experimental study. The boundary conditions on the fluid velocity u are

ur = 0 at z = H1, z = H2, (2)

uz = − ∂D1

∂t
at z = H1, (3)

and

uz =W +
∂D2

∂t
at z = H2, (4)

where z is the coordinate normal to the initial plane of the interface scaled with
aCa1/2.

Assuming that the primary force acting on the drop during the bounce is the
lubrication pressure, the equation of motion for the drop yields

dW

dt
=

3

2St1/2

∫ ∞

0

(p − p∞)r dr, (5)

where p∞ is the ambient pressure.
The importance of non-continuum effects in the lubrication gas flow can be

characterized by a ratio of the characteristic gap at which deformation occurs to
the mean free path of the gas, i.e. δnc = aCa1/2/λ. When δnc = O(1), the flow of the gas
in the gap is governed by the Boltzmann equation

∂(n∗f ∗)

∂t∗ + c∗
r

∂(n∗f ∗)

∂r∗ + c∗
z

∂(n∗f ∗)

∂z∗ = J (n∗f ∗, n∗f ∗), (6)

where, f ∗(c∗, r∗, z∗, t∗) is the velocity distribution function, n∗(r∗, z∗, t∗) is the local
number density, c∗ is the velocity of a gas molecule and J is the bi-linear collision
integral. The mean thermal speed of the gas molecules is 〈c〉 ≡ (8kT/(πm))1/2, where m

is the mass of a gas molecule and T is the temperature of the gas. The Mach number,
M = U/〈c〉, is a measure of the deviation from equilibrium owing to the fluid velocity.
Because the radial velocity of the gas in the lubrication gap is O(UCa−1/4) and the
pressure variations are O(σ/a), the velocity distribution function, number density,
temperature and mean free path variations due to the fluid flow are O(MCa−1/4) and
O(σ/(ap∞)). In practice, the criteria, MCa− 1/4 � 1 and σ/(ap∞) � 1, are nearly always
satisfied and we can linearize the velocity distribution function:

f ∗ = f ∗
MB(1 + MΞ ), (7)

where

f ∗
MB =

(
m

2πkT

)3/2

exp

(
− mc∗2

2kT

)
(8)

is the equilibrium Maxwell–Boltzmann distribution of velocities and Ξ (c∗, r∗, z∗)
represents the deviation of the velocity distribution from equilibrium. Provided that
M � Ca1/4, we can solve a linearized quasi-steady equation for Ξ . This criterion
is closely related to the criterion, Reg � Ca1/4 for neglecting inertial terms in the
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equations of motion for continuum gas flow in a lubrication gap with gap thickness
aCa1/2.

We can derive the standard mass conservation equation,

∂n∗

∂t∗ +
1

r∗
∂

∂r∗ (r∗u∗
r n

∗) +
∂

∂z∗ (u∗
zn

∗) = 0, (9)

by taking the zeroth moment of the Boltzmann equation. The variation of density in
the mass conservation equation can be neglected when MCa− 1/4 � 1 and σ/(ap∞) � 1
to yield the standard incompressible mass conservation equation. Integrating this
equation across the lubrication gap and applying the boundary conditions (2) and (3)
yields

∂H ∗

∂t∗ +
1

r∗
∂

∂r∗

(
r∗

∫ H ∗
2

H ∗
1

u∗
rdz∗

)
= 0. (10)

Although the effect of number density variations is negligible in the mass conserva-
tion equation, the number density (or pressure) variations drive a non-equilibrium
velocity distribution function Ξ in the linearized Boltzmann equation that results in
a mean velocity of the gas. It can be shown by scaling of the linearized Boltzmann
equation that radial variations in p are more significant than axial variations, in
analogy to the continuum lubrication problem. As a result, we can use existing
solutions to the problem of rarefied gas flow driven by pressure gradients along
a planar channel (the local geometry of the lubrication gap) to determine the
relationship between the radial flux and the pressure gradient. This relationship
can be expressed in the form∫ H ∗

2

H ∗
1

u∗
rdz∗ =

2φ(δ)

πρg〈c〉H ∗2 ∂p∗

∂r∗ , (11)

where φ is a non-dimensional function of a parameter, δ = H∗/λ= Hδnc, which is
the inverse of the Knudsen number based on the local gap thickness. Here, ρg is
the ambient gas density far from the drop. Substituting (11) into (10) and non-
dimensionalizing yields

W +
∂D

∂t
=

2B

πδnc

1

r

∂

∂r

(
rH 2φ(δ)

∂p

∂r

)
, (12)

where we have used the relationship µg = Bρg〈c〉λ. The exact value of B for hard
sphere molecules is 5π/32. However, in this analysis, we use the value B = 1/2, which
leads to a an error of about 2% in the viscosity. This enables us to use the expression
for the flux φ(δ) or small δ derived by Sundararajakumar & Koch (1996). For δ>10,
the effects of non-continuum flow may be approximated in terms of a Maxwell
slip-boundary condition on the drop surfaces and

φ =
π

12
δ + 1.8 for δ>10. (13)

This result is consistent with Hocking’s (1973) analysis of lubrication flows between
rigid spheres. The asymptotic result derived by Sundararajakumar & Koch (1996) for
small δ is

φ = ln

(
1

δ

)
+0.4531 for δ < 0.1. (14)

When 0.1<δ<10.0, we use the results of a numerical solution of the Bhatnagar–
Gross–Krook (BGK) approximation to the linearized Boltzmann equation presented
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by Cercignani & Daneri (1963). The numerical values of Cercignani & Daneri are
consistent with the analytical expressions in the limits of large and small δ.

The net surface deformation D obtained from a normal force balance is

1

r

∂

∂r

(
r
∂D

∂r

)
=

1

St1/2
(p∞ − p) . (15)

For r �1, where the gap becomes large enough for a continuum approximation to
hold, we find the asymptotic deformations to be of the form

Di = − 2

3

dW

dt
ln r + ci(t) + O

(
ln r

St1/2r2

)
for i =1, 2, (16)

where the functions c1(t) and c2(t) are determined by matching the lubrication
approximation to the outer solution. Equations (5), (12) and (15) indicate the relatively
strong algebraic dependence of the pressure, deformation and drop velocity on St and
δnc. An additional, weak logarithmic dependence on We− 1/4 arises from matching
(16) with the outer solution. Here, aWe1/4 is the maximum extent of the lubrication
film region required before the kinetic energy of the drop is converted to energy of
interfacial deformation.

We now turn to a consideration of the liquid flow and the deformation of the drop
and interface outside the lubrication regime. These solutions will be matched with
(16) to obtain the constants c1(t) and c2(t) and complete the determination of the
lubrication problem. The liquid flow within the drop and the drop deformation outside
the lubrication region can be obtained using the potential-flow analysis described by
Gopinath & Koch (2001a). The velocity potential characterizing the flow field inside
the drop and deformation in the outer region are written in series form using Legendre
functions as basis functions. Matching this solution to (16) yields

c2 =
dW

dt

[
2
3
ln

(
Ca − 1/4

Nc

)
+ 0.100

]
−

Nc∑
k =2

Lk, (17)

where Lk and Bk are coefficients in the expansions for the deformation and velocity
potential, which are determined from the ordinary differential equations:

dLk

dt
= kBk for k � 2, (18)

dBk

dt
= − 2k +1

3

dW

dt
− (k2 + k − 2)Lk, (19)

with the initial condition that the coefficients are zero at the onset of the collision.
The value of c2(t) is independent of the cutoff mode number Nc provided that Nc is
sufficiently large.

To determine c1(t), we must analyse the flow and deformation in the half-space of
liquid far from the drop, i.e the outer problem for the initially planar interface. The
flow of the liquid far from the drop occurs over a length scale that is O(a) and is
governed by the Navier–Stokes equation. The gas pressure in the outer region is much
smaller than the pressure induced in the liquid owing to the flow and can be ignored.
Viscous effects in the liquid are small because the bounce time is short compared
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with ρla
2/ µl . The pressure in the liquid layer results primarily from the acceleration

of the fluid. These observations lead us to consider inviscid equations of motion for
the pressure p1 and velocity u1 in the liquid layer:

∂u1

∂t
= − ∇p1, (20)

u1 = ∇φ, (21)

∇2φ = 0. (22)

Here, we scale the velocity potential with aU, the pressure with ρlU
2We− 1/2, positions

with a, time with the bounce time aWe1/2/U , and the deformation with aWe1/2.
Using the approximation that the O(aWe1/2) deformation of the interface is small

compared with the O(a) wavelength, we can transform the kinematic and dy-
namic boundary conditions at the deformed interface into conditions applied at
the undeformed interface z′ = 0:

∂φ1

∂z′

∣∣∣∣
z′ =0

= − ∂D1

∂t
, (23)

− ∂φ1

∂t

∣∣∣∣
z′ = 0

+ We − 1/2(p∞ − p) =
1

r ′
∂

∂r ′

(
r ′ ∂D1

∂r ′

)
. (24)

Taking the two-dimensional axisymmetric Fourier transform of (23) and (24) and
expressing the velocity potential in terms of Fourier modes:

φ1(r
′, z′, t) = 2π

∫ ∞

0

B(q, t)e2πqr ′
J0(2πqr ′)q dq, (25)

where J0 denotes the Bessel function of zero order, yields

− ∂D̂1

∂t
= 2πqB(q, t), (26)

∂B

∂t
− F = 4π2q2D̂1(q, t). (27)

Here, the term F = − (4π/3)dW/dt arises from the force exerted by the gas pressure
in the lubrication gap on the interface. This force is treated as a delta function in
space because the radial extent of the lubrication film is assumed to be much smaller
than a. The constraint that the volume of the liquid layer does not change during the
bounce yields D̂1(q = 0, t) = 0. The solution to (26) and (27) that satisfies causality
and the condition of zero deformation and liquid velocity potential at t =0 is:

D̂1(q, t) = − 2πq

∫ t

0

F (t ′)
sin[η(t − t ′)]

η
dt ′, (28)

where η = (2πq)3/2. Taking the inverse transform of (28) in the limit of small r ′

and matching with the inner approximation to the deformation (16) for r � 1, the
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Figure 3. The minimum gap scaled with aCa1/2 separating the drop and liquid layer is
plotted as a function of time scaled with aWe1/2/U for Oh= 2.4 × 10−5 and St1/2 = 25.

matching constant is determined to be

c1(t) =
2

3

dW

dt

[
ln

(
Ca − 1/4

πq0

)
− 0.5763

]
+ 2π

∫ q0

0

D̂1(q, t)qdq, (29)

where q0 is a cutoff wavenumber satisfying 1 � q0 � (2πr ′
m)−1. Here, r ′

m is a radial
position in the matching region We1/4 � r ′

m � 1. The matching constant is independent
of the exact value of q0 in the limit We � 1. Note the similarities between the matching
condition for the interface (29) and the drop (17) deformation. In both cases, the
sum over modes in the outer regions is cut off at a maximum value corresponding
to the matching region and the exact results are independent of the cutoff parameter.
The discrete sum in (17) is replaced by an integral in (29) because the interface is
unbounded while the drop interface is finite.

We have seen that the parameters St, We and δnc that arise most naturally in
the theory are different from those (Kn, Oh and We) that are most convenient for
describing the experiments. Thus, we will first express the theoretical results in terms
of St, We and δnc and then convert them to the experimental parameters when
comparing with the measurements.

The dynamics of a drop–interface collision are illustrated in figures 3 to 7 for a
drop with St1/2 = 25 and We = 2.25 × 10−4 in a continuum gas. This Stokes number
is typical of the conditions encountered in the experiments. For example, it is equal
to the Stokes number for the transition from coalescence to bouncing for the smaller
drops in methane at the higher gas pressure. On the other hand, the Weber number is
two or three orders of magnitude smaller than the values probed by the experiments.
The matching between the inner and outer approximations to the drop shape requires
We−1/4 � 1 to provide a clear separation of length scales between the radius of the
thin-film region and the radius of the drop. In practice, the numerical method is only
stable for We smaller than about 10− 3. Therefore, to make a quantitative comparison
with the experimental measurements in the following two sections, it will be necessary
to extrapolate the results of the theoretical calculations to the higher values of We
investigated experimentally.
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Figure 4. Qualitative sketch of the drop shapes that occur during the collision.
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Figure 5. Profile of gap thickness as a function of radial position at several times during the
collision for Oh= 2.4 × 10−5 and St1/2 = 25. The gap thickness, radial position and time are
scaled with aCa1/2, aCa1/4 and aWe1/2/U , respectively.

The minimum gap separating the drop and liquid layer is plotted as a function of
time in figure 3. The minimum gap thickness is an important feature to consider since
it is the most likely site for coalescence to occur. The drop and interface begin to
deform and the rate of thinning of the lubrication film slows dramatically when the
gap non-dimensionalized by aCa− 1/2 is approximately 1. However, as the deformation
proceeds the gap thickness becomes much smaller than 1. The high Stokes number of
the collision implies that the radial extent of the lubrication region must become large
to generate a force sufficient to reverse the momentum of the drop. To sustain the
elevated pressure required to maintain this deformed region over an extended period
of time, the gap thickness must become small. This allows an O(σ/a) pressure to be
maintained despite a small outflux of gas. A qualitative sketch of the drop shapes
that occur during the collision is given in figure 4, the profiles of gap thickness and
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gas pressure as functions of radial position for several times during the collision are
plotted in figures 5 and 6, respectively. Figure 7 presents the shapes of the drop
and liquid interfaces at several times. When the dimensionless gap thickness thins to
about 1 at t = 1, the gap thickness profile (figure 5) begins to flatten. The flat region
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spreads outward until about t = 3.5 and then begins to retract inward. The actual
drop and interface shapes during this time period are illustrated by the first drawing
in figure 4. In the thin-gap region, the two interfaces are nearly parallel and have a
radius of curvature that is twice the radius of the drop. This result can be rationalized
easily if we recognize that two curved fluid interfaces are available to accomplish the
change in reduced pressure from 2σ/a in the drop to 0 in the liquid layer below. Close
examination of the profiles in figures 5 and 7 indicates that the interfaces for t = 3.5
and 5.2 are not exactly parallel. Instead, the gap is thinner at the rim of the film. We
will refer to this shape as a dimple as it arises owing to the same mechanism that leads
to a concave dimple shape in drop–drop collisions (Gopinath & Koch 2001a). The
thin film at the rim allows the pressure to drop rapidly from a value near σ/a required
to maintain the reduced curvature of the film region to 0. (See the pressure profiles for
t = 3.5 and 5.2 in figure 6.) The minimum gap thickness occurs slightly later (t =5.2)
than the maximum radial extent of the dimple (t =3.5) because of the smaller amount
of gas available to maintain the pressure drop at longer times. As the drop recedes
from the surface and the dimple relaxes, a region in which the pressure is smaller than
ambient arises outside the dimple where the drop and interface are peeling away from
one another. The amplitude of this pressure valley increases with time and becomes
large when the dimple vanishes. Some of the energy of drop deformation is released
to form a relatively sharp tail in the drop, as illustrated in figure 4(b). This leads to
a second minimum in the profile of drop–interface separation versus time (figure 3).
The tail consists of a very sharp decrease in gap thickness with decreasing radial
position, as illustrated in figure 5 for t = 7.65. These profiles arise from both a tail in
the drop and a rise in the gas–liquid interface near the centreline, as seen in figure 7.

4. Coalescence–bounce transition
In this section, we compare theoretical and experimental results for the transition

between drop coalescence and drop bouncing. We consider first collisions of a drop
with an initially planar interface. As we noted in § 3, the parameters that appear
naturally in the theory are δnc, the ratio of the gap thickness aCa1/2 at which the
interfaces first start to deform to the mean free path of the gas, St1/2, the ratio of
the amplitude of interfacial deformation to the film thickness, and ln (We− 1/4), the
logarithm of the ratio of the drop radius to the maximum radial extent of the thin-film
region. Thus, we performed computations to determine the critical value of δnc above
which drops bounce for a range of values of St1/2 and ln (We− 1/4). For each [St1/2,
ln (We− 1/4)] pair, we computed the minimum gap thickness achieved during the
bounce process as a function of δnc. For values of δnc sufficiently close to the transition,
the minimum gap was a linear function of δnc. The intersection of this line with zero
minimum gap was taken as the critical δnc. For all the parameter values considered
here, the minimum gap thickness corresponding to the tail approached zero, leading
to coalescence, while the minimum gap during the dimple stage remained finite. The
resulting critical δnc values (solid symbols) are plotted as a function of ln (We− 1/4) for
several values of St1/2 in figure 8. A good fit to the data for St1/2 = 17.5, 24.2 and 37
is given by

δnc =8.09 − 0.254St1/2 + 0.0088St + 0.582 ln
(
We − 1/4

)
+ 0.102St1/2 ln

(
We − 1/4

)
. (30)

Because St1/2 = 50 is near the upper limit for which accurate computations can be
performed, we did not use the calculations at this Stokes number to establish the
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Figure 8. The critical value of δnc above which a drop bounces from a gas–liquid interface
is plotted as a function of ln (We−1/4) for St1/2 = 17.5 (lowest line and diamonds), 24.2 (next
lowest line and triangles), 35 (third line and circles), and 50 (highest line and filled squares),
and 54 (open square). The filled symbols are numerical simulations, the lines are the fit (30)
to the simulation data, and the open symbols are experimental measurements.

fit. However, the values of δnc given by (30) are in reasonable agreement with the
computations at St1/2 = 50.

The computations covered most of the range of Stokes numbers obtained in the
experiments described in § 2. However, the transitional Weber numbers in the experi-
ments were O(0.1–1) whereas the highest value of We for which stable computations
could be performed was about 10−3. As a result, it is necessary to extrapolate the
computational results to higher Weber numbers to compare with the experiments.
Fortunately, the dependence of the critical condition on We is only logarithmic. The
experimental measurements that correspond to the Stokes numbers for which the
computations were performed are plotted as the open symbols in figure 8. It can
be seen that the experimentally determined values of the critical δnc are similar in
magnitude to the extrapolation, (30), of the theoretically determined critical δnc.

A more complete comparison of the theory, (30), with all of the experimentally
determined coalescence–bounce transitions for drop–interface collisions is given in
figure 9. In this figure, the results are presented in terms of the most convenient
experimental parameters. The critical Weber number above which the drop bounces
is plotted as a function of the Ohnesorge number for two values of the Knudsen
number. The upper curve and squares correspond to the predictions and experiments
for Kn ≈ 6.9×10−4 and the lower curve and diamonds to predictions and experimental
results for Kn ≈ 5.5 × 10−4. The Knudsen number was varied in the experiments by
changing the gas pressure. It can be seen that the theory and experiments indicate a
similar downward shift in the Weber number for the coalescence–bounce transition
with decreasing Kn (increasing pressure). The Ohnesorge number was varied by
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Figure 9. The critical Weber number above which drops bounce from a gas–liquid interface
is plotted as a function of the Ohnesorge number. The lines are the fit (30) to the theoretical
results and the symbols are experimental measurements. The lower line and diamonds are for
Kn ≈ 5.5 × 10−4, while the upper line and squares are for Kn ≈ 6.9 × 10−4.

changing the gas viscosity (using methane or nitrogen) and by varying the drop
radius. Both theory and experiment indicate a sharp decrease in the critical Weber
number with increasing Oh. Note that the critical Weber number is a very strong
function of both Kn and Oh, indicating that there exists only a narrow range of
(Kn,Oh) values for which a transition is observed for realistic values of We. In other
words, only special choices of the gas pressure, gas and liquid composition and drop
size will lead to an observed transition as the drop velocity is varied. This theoretical
prediction is consistent with our experience in conducting the experiments.

Coalescence can result either from the diminution of the viscous resistance of
the gas due to non-continuum effects or from van der Waals forces. The relative
importance of these two effects is described by a parameter α = h∗

vdW/(5λ), which is
the ratio of the gap thickness h∗

vdw =(6πσ/Aa)1/3 at which the pressure due to van der
Waals forces is equal to the Laplace pressure σ/a to the gap thickness 5λ at which the
lubrication pressure between two colliding spheres is reduced to half its continuum
value (Sundararajakumar & Koch 1996). In our experimental study, α =0.083–0.17,
indicating that non-continuum effects arise well before van der Waals forces as the
gap thins. As a result, we expect that van der Waals forces have only a minor
influence on the transition from coalescence to bouncing for normal collisions of
small-Weber-number aerosol drops. It may also be noted that there is no correlation
between the deviations of the experimental measurements in figure 9 from the theory
and the value of α.

A direct comparison of our theory with the previous experiments of Jayaratne &
Mason (1964) is not possible because of the oblique geometry of the collisions in
those experiments. However, extrapolating Jayaratne & Mason’s results for the critical
velocity for 74 µm radius drops, we estimate the critical velocity for normal incidence
would be about 51 cm s−1 corresponding to We= 0.27. For this Weber number and the
experimental Ohnesorge number, Oh = 2.27×10− 4, (30) predicts a critical Knudsen
number of 6.1×10− 4 which is similar to the experimental value Kn =7.9×10− 4. For
the larger drops considered by Jayaratne & Mason, it is either difficult to obtain a
reasonable extrapolation to normal incidence or the Weber number is large. However,
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Figure 10. The critical value of δnc above which two drops bounce is plotted as a function
of ln (We−1/4) for (from bottom to top) St1/2 = 12, 14, 16, 18, 20, 24 and 26. The symbols are
results of numerical simulations and the lines are the fit, (31).

their experiments show that the critical Weber number decreases with increasing drop
size at constant gas pressure. This trend is in agreement with our experiments and
theory.

Next, we consider the transition from coalescence to bouncing for the collision
of two equal-sized drops with a relative velocity 2U along their line-of-centres. The
calculations are performed by incorporating a non-continuum flux, similar to that
described in § 3, into the description of drop–drop collisions described by Gopinath &
Koch (2001a). The critical value of δnc is determined for various values of St1/2 and
ln (We−1/4) using the procedure described above for drop–interface collisions. For
drop–drop collisions like drop–interface collisions, the coalescence occurs during the
tail formation after the centres of mass of the drops have started to recede from one
another. The critical values of δnc determined from the computations are plotted as
symbols in figure 10 for St1/2 = 12–26 and We ≈ 10−4–10−2. The lines indicate the fit

δnc = − 1.49 + 1.12St1/2 − 0.0195St + 0.484 ln
(
We−1/4

)
. (31)

The results for the transition from coalescence to bouncing for the collision of two
drops are similar to those for a drop–interface collision. For example, at St1/2 = 18
and ln (We−1/4) = 2, the critical value of δnc is 13.3 for a drop–drop collision and
11.2 for a drop–interface collision. The critical value of δnc is slightly smaller for the
drop–interface collision, indicating that drops bounce more easily from an interface
than from a second equal-sized drop. The critical δnc for the drop–interface collision
has a stronger dependence on the Weber number such that the difference in the
critical conditions for drop–interface and drop–drop collisions grows with increasing
We. The greater stability of the drop–interface system and the stronger dependence
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Figure 11. The critical Knudsen number above which two drops coalescence on impact is
plotted as a function of the Ohnesorge number. The lines correspond to the fit, (31), to the theo-
retical results for (from bottom to top) We= 10−4, 10−3 and 10−2. The squares are the
experimental results of Qian & Law (1997). The vertical and horizontal error bars indicate
the uncertainty in the values of Kn and Oh resulting from the fact that a range of drop radii
were used in the experiments.

on ln (We−1/4) arise because an initially planar interface is more easily deformed by
the pressure developed in the lubrication gap than an initially spherical drop. The
deformation of the interface allows the lubrication gap to remain finite preventing
coalescence under conditions where two drops would coalesce.

The theoretical results, (31), for the drop–drop transition are presented as solid
lines in figure 11 in terms of the dimensionless variables (Kn, Oh, We) that are most
convenient for an experimental study. The critical Knudsen number is plotted as a
function of Oh for three values of We and the results cover the range of Oh and
We explored in the numerical simulations. It can be seen that the dependence of
the critical Knudsen number on the Weber number is very weak, while the critical
Knudsen number grows rapidly with increasing Oh. Thus, the bounce–coalescence
transition for two drops like that for a drop and an interface is most sensitive to the
drop radius, gas pressure, gas viscosity, liquid density and interfacial tension and has
a weak dependence on the impact velocity.

Qian & Law (1997) observed oblique collisions between two equal sized drops with
radii of 100–200 µm. The relatively large size of the drops led to Weber (We = 5–20)
and Stokes numbers (St1/2 = 70–170) that are considerably larger than those explored
in our theoretical study. Thus, the assumption of small-amplitude drop deformation
is not appropriate to Qian & Law’s study. Nonetheless, there are similarities in the
qualitative trends revealed by these experiments and those predicted by the present
theory. For example, Qian & Law observed that hydrocarbon drops with lower surface
tension bounce more readily than water drops. Lower surface tension gives higher
We and Oh both of which promote bouncing, according to the theory. In addition,
Qian & Law noted that drops bounce more readily in 7.5 atm helium than in 1 atm
nitrogen. The primary difference between these gases is the smaller mean free path and
Knudsen number in the high-pressure helium. The theory predicts a strong influence
of Knudsen number on the critical Weber number.
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Qian & Law (1997) present maps of the collision regimes (bouncing, coalescence,
or coalescence followed by break up) as a function of the Weber number and the
angle between the relative velocity and the line-of-centres. Results were reported for
collisions between two water drops and two hydrocarbon (n-tetradecane) drops in
nitrogen and helium atmospheres. For each liquid–gas pair, the collision regime map is
given for three different pressures: a low pressure at which nearly head-on collisions at
moderately small We (We < ∼40) lead to coalescence, a high pressure at which normal
collisions at moderately small We lead to bouncing, and an intermediate pressure at
which a transition from coalescence to bouncing is observed at We =5–20. Since the
experiments involved oblique collisions, the results for normal collisions are obtained
by extrapolation. From our theoretical and experimental studies, we believe that the
range of pressures for which the intermediate coalescence regime map is observable is
relatively narrow. In figure 11, we plot the Knudsen numbers (squares) corresponding
to the gas pressures for which Qian & Law observe transitions from coalescence to
bouncing for head-on collisions for the four different gas–liquid pairs. The error bars
indicate the uncertainty resulting from the fact that Qian & Law plot data for a
range of drop radii on a single graph. The critical Knudsen numbers in Qian & Law’s
experiments have a similar magnitude to those predicted by the theory for the same
Ohnesorge number. Although the Weber number in the experiments is different from
that for which theoretical calculations have been performed, the predicted dependence
of the critical Kn on We is weak, at least in the regime We � 1. The experiments and
theory both indicate an increase of the critical Kn with increasing Oh.

A striking result of the present study is that the transition from coalescence to
bouncing for slightly deformable aerosol droplets is only weakly dependent on the
Weber number or impact velocity. It is interesting to contrast this situation with
the behaviour of slightly deformable drops suspended in a viscous liquid (Rother,
Zinchenko & Davis 1997) and highly deformed drops (Qian & Law 1997). When
two sedimenting drops undergo an oblique collision in a viscous liquid, interfacial
deformation occurs at a larger gap thickness when the capillary number (or velocity)
is increased. As a result, increasing relative velocity prevents coalescence. The
deformation of aerosol drops also begins at larger gap thicknesses when the capillary
number (velocity) is increased. However, the amplitude of interfacial deformation
required to produce a bounce increases with increasing Weber number (velocity) and
the minimum gap thickness decreases throughout the bounce process. As a result, the
minimum gap thickness and tendency for coalescence between small aerosol drops is
weakly dependent on the impact velocity.

Aerosol drops undergoing normal collisions can experience a transition from
coalescence to bouncing at small to moderate We followed by a transition from
bouncing to coalescence at higher Weber numbers, We ≈ 80–160. The first transition
has been the focus of the present contribution. Qian & Law (1997) observed both
transitions in their experiments and developed a simple model for the high We
transition. At high We, the time of contact between two drops increases with increasing
We thereby allowing a longer time for the gas film between the drops to thin. This
leads to a strong dependence of this second transition on We and a tendency for large
velocities to promote coalescence. In the limit We � 1, the bounce time tb = (ρla

3/σ )1/2

is independent of the impact velocity and this results in a weak dependence of the
first coalescence–bounce transition for small droplets on the impact velocity.

In our theoretical studies, we found that the two liquid–gas interfaces approach
one another and form a very small gap first at the rim of the lubrication film as a
dimple forms and subsequently at the centre of the lubrication film as a tail forms



178 G. A. Bach, D. L. Koch and A. Gopinath

0.40

0.36

0.32

0.28

0.24

0.20
0 2 4 6 8 10

(× 10–3)

We

1 – e

Figure 12. The computed coefficients of restitution for for drop–interface collisions for two
Ohnesorge numbers, 7.6 × 10−6 (circles) and 2.15 × 10−5 (squares) plotted as a function of
Weber number. The triangles are for a repulsive force separating the drop and fluid layer and
corresponds to Oh= 0. The lines are the fit, (33).

in the receding drop(s). This phenomenon is illustrated in figures 3, 4 and 5 for a
drop–liquid-layer collision, but also applies to drop–drop collisions. If the gas film at
the rim became small enough compared with the mean free path, then coalescence
could occur there first, leading to trapping of a bubble. If coalescence does not occur
at the rim, it could subsequently occur by the two tails touching as the drop(s) recede.
In our theoretical studies of drop–drop and drop–interface collisions for We � 1,
we always found that coalescence occurred at the tail at the critical Weber number
for transition from coalescence to bouncing. In an experimental study of the impact
of large drops (a > ∼1.5 mm) with We > 6, Thoroddsen, Etoh & Takehara (2003)
observed coalescence at the rim. It is conceivable that there is transition from tail
coalescence to rim coalescence with increasing We. It should also be noted, however,
that our prediction only applies to the point of transition, whereas Thoroddsen et al.’s
experiments were not conducted near a critical We. Since the minimum gap at the
rim occurs earlier than that at the centre (figure 3), it is to be expected that there
would be a transition from tail coalescence to rim coalescence as we move away from
the critical We.

5. Coefficient of restitution
During the bounce of a drop with a gas–liquid interface, part of the drop’s kinetic

energy is stored as interfacial deformation energy and then restored to kinetic energy
of drop translation after the bounce. However, a portion of the energy is used to
create drop oscillations and waves on the gas–liquid interface. In addition, some
of the energy is dissipated by the viscous flow in the gas film. The energy lost to
oscillations of the interfaces in the absence of viscous dissipation can be computed
using the model in which the drops and interface are prevented from coalescing by a
repulsive force and no effect of the viscous stress in the gas is included. This result is
indicated by the triangles in figure 12 and can be fit by the power law

1 − e = 0.432 We0.0896, (32)
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Figure 13. The viscous dissipation contribution to the coefficient of restitution of a drop col-
liding with a gas–liqud interface, i.e. 1 − e − 0.432 We0.0896, is plotted as a function of ln (St).
The symbols represent computational results for a range of Ohnesorge numbers and the line
is the fit given by (33).

where e is the coefficient of restitution defined as the ratio of the velocity after
collision to the velocity before collision. The energy lost to surface waves increases
with increasing Weber number owing to the increased amplitude of the interfacial
deformation.

When the effect of the gas film on the drop bounce is considered, we find that
the coefficient of restitution is insensitive to the mean free path of the gas except
at conditions very close to the coalescence–bounce transition. Consistent with this
prediction, we found no dependence of the experimentally observed coefficients of
restitution on the gas pressure. Thus, we will present theoretical results for the
coefficient of restitution based on continuum lubrication forces in the gas film. The
computed coefficients of restitution for two Ohnesorge numbers, 7.6 × 10−6 (circles)
and 2.15 × 10−5 (squares) are plotted as functions of Weber number in figure 12. The
coefficient of restitution is low at small Weber numbers where the Stokes number
is relatively small. (Note that St = We1/2/Oh.) The Stokes number is the ratio of the
inertia of the drop to the gas viscosity, so, the lower the Stokes number, the more
readily the gas viscosity can dissipate the kinetic energy of the liquid motion. As
the Weber number is increased, e passes through a maximum and then decreases
owing to the increasing importance of losses to surface oscillations. We performed
calculations for a range of Ohnesorge numbers from 7.6 × 10−6 to 4.69 × 10−5 and
Stokes numbers from 40 to 5000 and found that the difference between the coefficient
of restitution and the value given by (9) for Oh = 0 was only a function of the Stokes
number. This is demonstrated in figure 13. The coefficient of restitution for finite Oh
can be fitted well by

1 − e = 0.432 We0.0896 + 87.3 St−1.53 exp{0.0783[ln (St)]2}. (33)
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Figure 14. Experimental measurements for the coefficient of restitution of a drop colliding
with a gas–liquid interface along with the predictions (33) and (34) for drop–interface and
drop–drop collisions corresponding to the lowest (2.3 × 10−4) and highest (4.9 × 10−4) values
of the Ohnesorge number in the experiments. In each case, the higher Oh value yields the lower
of the two curves. The circles and squares are the experiments with nitrogen and methane,
respectively. The closed symbols are for the smaller drops and the open symbols for the larger
drops.

This fit is indicated by the lines in figure 12 and it reproduces the full dependence of
e on We at various values of Oh. We conducted a similar series of calculations for
drop–drop collisions and found the coefficient of restitution to be fitted well by

1 − e =0.1 We0.22 + 49 St−1.71 exp{0.0971[ln (St)]2}. (34)

The experimental measurements for the coefficient of restitution are plotted in
figure 14 along with the predictions (33) and (34) for drop–interface and drop–drop
collisions corresponding to the lowest (2.3 × 10−4) and highest (4.9 × 10−4) values of
the Ohnesorge number in the experiments. Both experiments and theory for drop–
interface collisions yield a significantly lower coefficient of restitution than is predicted
for drop–drop collisions. The initially planar gas–liquid surface is more readily
deformed than a spherical drop in which the volume of the liquid is constrained.
As a result, more energy is lost to surface waves in the drop–interface collisions
than is lost to oscillatory modes in the drop–drop collisions. The continuum theory
predicts a peak in the coefficient of restitution at We =0.025 for Oh = 2.3 × 10−4

and We =0.09 for Oh = 4.9 × 10−4. This peak typically occurs near the critical Weber
number for the coalescence–bounce transition for the gas pressures studied here.
Thus, our experimental measurements are primarily after the peak and indicate the
downward trend of the coefficient of restitution with Weber number resulting from the
increasing importance of energy loss to surface oscillations. The qualitative trends of
the coefficient of restitution are similar for the theory and experiment. In particular, the
coefficient of restitution decreases with increasing We and increasing Oh and the effect
of Oh diminishes with increasing We. However, the absolute values of the measured
coefficients of restitution are about 0.2 smaller than the predictions and the observed
variation of e with We and Oh is larger than predicted. For example, the difference
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between the coefficient of restitution predicted for the highest and lowest Oh at
We =0.1 is 0.034 whereas the variation among the experimental measurements is
about 0.09. The experimental coefficients of restitution decrease by about 0.2 with
increasing Weber number, while the predictions decrease by about 0.1.

One reason for the lower energy loss predicted by the theory could be the neglect
of viscous dissipation due to the flow in the liquid. To investigate this possibility, we
performed a calculation with a repulsive force replacing the gas film, but including
the effects of viscous dissipation in the drop and the liquid sublayer. This calculation
is similar to that outlined in § 2.4.2 of Gopinath & Koch (2001a) for drop–drop
collisions. We found that viscous dissipation in the liquid lowered the coefficient of
restitution by only 0.01 at We =0.1 and Ohl = µl/(ρlaσ )1/2 = 0.0189. The energy lost
to viscous dissipation in the liquid is proportional to the liquid Ohnesorge number Ohl

for Ohl � 1 and decreases with decreasing We. The value of Ohl chosen for this sample
calculation corresponds to water drops of radius 40 µm. Marangoni stresses associated
with contamination of the gas–water interface by surfactants would be another
possible reason for the smaller coefficient of restitution observed in the experiments.
However, we believe that such an effect would lead to a considerable variation
in the measured coefficient of restitution from one experimental trial to the next
and this was not observed. Since the difference between theory and experiment
remains at higher We when the effect of viscous dissipation in the gas film becomes
negligible, we do not believe that it arises from errors in the detailed treatment of the
gas flow in the lubrication regime. We postulate instead that errors associated with the
assumption of small-amplitude deformation (valid for We1/2 � 1) and the matching
of inner and outer solutions (valid for We1/4 � 1) restrict the range of quantitative
accuracy of the theory to We < 10−4, which is smaller than the experimental Weber
numbers (0.01 to 2). It would therefore be valuable to develop a numerical method
that is capable of including non-continuum effects in the thin gap between the drop
and interface while simultaneously resolving the full nonlinear deformation of the
interfaces. Nobari et al. (1996) used a finite-difference method to simulate drop–
drop collisions and determine the coefficient of restitution for large Weber number
drops (We =50–450). They observed the qualitative trends of decreasing coefficient
of restitution with increasing drop deformation (increasing Weber number) and
increasing viscosity (decreasing Reynolds number). However, they did not investigate
slightly or moderately deformable drops and did not resolve the gas film down to the
very small gap thicknesses that play a role in determining the viscous losses in low
We drop collisions.

6. Drop formation following coalescence
After a drop coalesced at the interface, we observed the emission of a new, smaller

(daughter) drop. A sample trajectory showing the formation of a daughter drop is
presented in figure 15. The mother drop approaches the interface, bounces, returns
to the interface and coalesces. Thereafter, a smaller drop is emitted with a velocity
that is higher than the incident velocity of the mother drop. The fact that the new
drop is smaller can be discerned easily by noting that the velocity of the new drop
after it reaches its peak height and approaches terminal velocity is lower than the
corresponding velocity of the mother drop after its bounce. In the example shown
here, the mother bounced once before coalescing. However, in many of our studies
(especially those at relatively small gas pressures), the mother coalesced on the initial
impact and this enabled us to vary the impact velocity of the mother over a significant
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Figure 15. A sample trajectory showing a droplet bouncing once, then coalescing on the
second impact. The coalescence is followed by the formation of a daughter drop with a larger
velocity and smaller radius than the coalescing drop.

range. In some instances, we observed the formation of a granddaughter drop after
the daughter drop coalesced. However, the very high velocity and small radius of this
third generation of drop made observation difficult and so we report quantitative
results only for the daughter drops.

The surprisingly high velocity of the daughter drop can be understood when we
recognize that its formation is driven by surface tension forces. The Weber number
of the coalescing drops was typically smaller than one, indicating that the inertia of
the mother drop is small compared with the surface tension force generated when the
gas film separating the drop and liquid sublayer ruptures. Thus, the daughter drop
in our experiments with We � O(1) is generated primarily by a surface-tension-driven
flow. For collisions with We � 1, the surface-tension-driven velocity is larger than the
impact velocity. This situation is similar to that studied by Thoroddsen & Takehara
(2000) in which drops with diameters of about 3 mm were placed at an interface
with essentially zero velocity so that We =0. In contrast, the daughter drop formation
observed for We > 32 by Rein (1996) and Hsiao, Lichter & Quintero (1998) results
from a flow driven by the inertia of the impacting drop.

In general, we might expect the radius ad and velocity Ud of the daughter drop to
depend on the viscosities, µl and µg , and densities, ρl and ρg , of the liquid and gas,
the surface tension σ , the velocity U and radius a of the mother drop, and the mean
free path of the gas λ. However, the large ratio of the liquid to gas density suggests
that the gas inertia is unimportant. The Ohnesorge numbers, Ohl and Oh, based on
the liquid and gas viscosity are small so that viscous stresses will play a small role
in surface-tension-driven flows. If the viscosity of the gas is unimportant, then so
is the mean free path. Thus, from dimensional analysis we conclude that ad/a and
Ud(ρla/σ )1/2 are functions of We only. These quantities will approach constant values
when We � 1. In this limit, the impact velocity of the mother is small compared with
the characteristic surface-tension-driven velocity scale (σ/(ρla))1/2 and the daughter
formation is independent of the impact velocity.
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Figure 16. The ratio of the radius of the daughter and mother drop radii (diamonds) and the
non-dimensional velocity Ud (ρla/σ )1/2 (squares) are plotted as a function of the Weber number
based on the mother’s radius and impact velocity. Each point represents an average over
several observations with similar Weber numbers. The vertical error bars correspond to the
95% confidence intervals.

We found, as expected, that the daughter drop radius and velocity are independent
of the gas composition and pressure and so we present the results for all pressures and
both methane and nitrogen as the gas phase in figure 16. Because of the large velocity
and small size of the daughter drop, considerable uncertainty was involved in the
image analysis and trajectory fit that yielded the initial velocity of the daughter drop
and the drop radius. To improve the statistical accuracy of the results, we averaged
several observations of drop impacts with similar Weber numbers to obtain each point
in figure 16. The ratio of the radii of the daughter and mother drops approaches
ad/a = 0.55 ± 0.02 (95% confidence intervals) for We � 1. This is comparable to the
value of about 0.54 that we estimate from figure 2 of Thoroddsen & Takehara. The
dimensionless daughter velocity approaches Ud(ρla/σ )1/2 = 0.38 ± 0.04 for We � 1.
Thoroddsen & Takehara did not report this quantity. However, they did visualize
the detailed process of daughter formation (which is beyond the time resolution for
our drop size and video system) and noted that the temporal duration of the drop-
formation process follows a scaling obtained by balancing surface tension with inertia.
This observation is consistent with the surface-tension–inertia scaling we observe for
the daughter drop velocity. Note that, if the net surface energy released by the
coalescence of the mother and formation of a smaller daughter drop were converted
to the kinetic energy of the daughter with perfect efficiency, the dimensionless velocity
would be Ud(ρla/σ )1/2 = 5.02. Thus, not surprisingly, only a small portion of the
energy goes into the translation of the daughter drop.

When the Weber number becomes O(1), the radius ratio and dimensionless daughter
velocity can have a dependence on We. We observed a slight increase in the ratio of the
daughter to mother radius to a value around 0.7 and a decrease in the dimensionless
velocity to about 0.2 for We ≈ 1. A transition from coalescence with no daughter
formation to the formation of daughter drops with increasing We has been observed at
a much higher Weber number (We =32) than those explored in our study (Rein 1996;
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Hsiao et al. 1998). It is possible that the downward trend in daughter velocity with
increasing Weber number for We =O(1) is suggestive of the approach of a transition
from daughter formation to no daughter formation at a Weber number intermediate
between the highest value (We = 2) studied here and the much higher Weber numbers
explored by Rein and Hsiao et al.

7. Conclusion
We have observed the transition from coalescence to bouncing with increasing

Weber number for small (40 and 80 µm diameter) water drops colliding with a water
sublayer in gases with various pressures and viscosities. The experimental results were
compared with a theory based on potential flow in the liquid, weak deformation of
the gas–liquid interfaces, and non-continuum viscous flow in the lubrication gas film.
Both theory and experiment indicate a very strong dependence of the critical Weber
number on the gas pressure and viscosity. Similar results were predicted for the
coalescence–bounce transition in the head-on collision of two drops. This observation
implies that, by varying the pressure in a heat exchanger or other multiphase flow,
we may be able to observe an abrupt transition from a situation in which disperse
droplets coalesce readily with a liquid film and with one another to one where the
drops bounce and remain dispersed. We also observed and predicted the coefficient of
restitution for drops that bounce. The coefficient of restitution is small owing to the
highly deformable nature of the surface of the liquid sublayer and the generation of
surface waves. Finally, we observe that a new smaller drop is formed at a gas–liquid
interface after a drop coalesces. This smaller drop has a velocity that scales as a
surface-tension-driven flow, i.e. (σ/(ρla))1/2. This phenomenon may play a role in the
formation of fine mists and salt particles from the surface of the ocean.

The asymptotic theory presented here provides a good qualitative description of the
coalescence–bounce transition and the coefficient of restitution and their dependence
on the Knudsen, Weber and Ohnesorge numbers. The present theory is strictly valid
only for very small Weber numbers. A computational method capable of describing
large-amplitude deformation of the gas–liquid interfaces while also including an
accurate description of the non-continuum gas flow acting in the thin gas film
between the drop and interface would be needed to obtain a more robust theory
capable of describing droplet coalescence and bouncing at moderate Weber numbers.

This work was supported by US Environmental Protection Agency grant R827115
and NASA grant NAG3-2349. The experiments concerning the formation of drops
after coalescence were performed with the help of an undergraduate researcher,
Manuel Balseiro, who was supported by the GE Faculty of the Future program.
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